
Discouragement Attacks

Vitalik Buterin
Ethereum Foundation

December 16, 2018

Abstract

We explore “discouragement attacks” on economic consensus mech-
anisms. A discouragement attack consists of an attacker acting mali-
ciously inside a consensus mechanism in order to reduce other valida-
tors’ revenue, even at some cost to themselves, in order to encourage
the victims to drop out of the mechanism. The motivations to conduct
discouragement attacks are twofold. First, the attacks can increase
the attacker’s profit, as the mechanism may contain “competitive”
dynamics where some validators dropping out increases revenue to
the remaining ones. Second, the attacks can be part of a two-step
strategy where the second step is to carry out a traditional 51% at-
tack on the consensus algorithm against a now much smaller set of
“honest” validators warding off the attacker, and hence pay a much
lower cost for the attack.

1 Introduction

Consider the following type of attack on a proof of stake blockchain. The
rules of the chain are as follows: there is a maximum total reward R, and
if there are N validators (consider each validator as having deposited one
coin) then each validator, during every 10-second slot, has a chance to earn
a reward of R

N
if they actually sign a message that contributes to the chain’s

consensus during that round. An attacker that controls N
2

+ 1 validators
starts refusing to include messages from all remaining validators. Initially,
the attack reduces the victims’ revenue to zero and leaves the attacker’s
revenue unchanged. However, the victims then see no incentive to continue

1

to be validators and exit the proof of stake mechanism. The validator count

reduces to N
2

+ 1, and the attacker’s revenue increases from R ∗
N
2
+1

N
to R.

Here is a possible alternative ending: once everyone but the attacker
leaves, the attacker slowly exits their validators until only one validator re-
mains. They then perform a double-spending attack, censorship attack or
any other kind of attack on the chain. In either case, it’s clear that this kind
of two-step strategy is potentially a much cheaper way of bringing down
blockchains than a direct frontal attack.

2 Griefing factors

To analyze attacks like these, a common tool that we use is the griefing
factor. A mechanism in some equilibrium has a griefing factor of N if the
attacker has a mechanism by which they can sacrifice $1 of their own funds
to cause $N of losses to the other participants. If attackers can harm others
costlessly or profitably, the griefing factor is ∞. With respect to attackers
with ≥ 1

2
of all validators, the toy proof of stake mechanism we described

above has griefing factor ∞.
However, it is possible to modify the mechanism to bound the griefing fac-

tor: if M out of N validators are seen signing a message, then each validator
that signs only earns R

N
∗ M
N

. Then, if the possibility of victims withdrawing
or depositing is not taken into account, an attacker with N

2
validators cen-

soring k validators (for simplicity of analysis we’ll assume that 51% attacks
are possible with exactly 50%) cuts the reward of all online validators from
R
N

to R
N
∗ N−k

N
, and so causes:

• N
2
∗ R
N
∗ k
N

= R ∗ k
2N

losses to themselves due to reward reduction

• R
N
∗ k = R ∗ k

N
losses to victims of censorship

• (N
2
−k)∗ R

N
∗ k
N

= R∗(k
2N
− k2

N2) losses to others due to reward reduction

As k approaches zero, the griefing factor approaches
R∗ k

N
+R∗ k

2N

R∗ k
2N

= 3. As

k approaches N
2

, the griefing factor approaches
k
N
k

2N

= 2. Minorities can also

grief majorities by going offline, and for a minority attacker the griefing factor
is limited to 1 for small attacks and 1

2
for attacks with size approaching half

the entire validator set. In the rest of our analysis, we will speak abstractly

2

about proof of stake mechanisms with particular griefing factors; this will
allow us to compartmentalize our analysis.

3 Epsilon attacks

We will start off examining a particular subclass of attack, where the extent
of the attack is small. That is, the attacker selectively censors or otherwise
interferes with a small portion of the messages of the victims, reducing their
rewards but not enough to make them all leave.

In our naive examples above, the reward given to each validator was a 1
N

share of some fixed total pot, R, where N is the total number of validators
(or total deposit size). But this is really only one policy among many possible
policies. We can categorize many of them with the equation r = N−p, where:

• p = 0: constant “interest rate”, eg. under optimal conditions each
validator earns a return of 8% per year.

• p = 1
2
: the rewards (and penalties) to validators scale with 1√

N
, so

total rewards scale with
√
N . This is a compromise between p = 0 and

p = 1.

• p = 1: constant total reward, ie. the total payout of the protocol is
dependent only on what percentage of validators take what actions, not
on the total deposit size.

• p =∞: the protocol is dead-set on ensuring that the total deposit size
is some specific constant Nk no matter what. If the total deposit size
exceeds Nk, the protocol keeps decreasing rewards until it drops to Nk,
and if the total deposit size is below Nk, the protocol keeps increasing
rewards until it rises to Nk. Mathematically, we represent this as the
reward curve being a vertical line at x = Nk, being equal ∞ below Nk

and 0 above Nk.

Note that if revenues to validators are dominated by transaction fees,
then p = 1 will hold.

We now rephrase the problem into the language of supply and demand:
there exist a set of players, each of which has some reserve reward level at
which they are willing to become validators in the consensus mechanism.

3

This is the supply curve, where the reward level is the price. The protocol,
which offers rewards for participation in the consensus mechanism, sets the
demand curve. If p = 0, the demand curve is horizontal - the protocol offers
that interest rate to an unlimited number of validators. If p =∞, the demand
curve is vertical. For any other p, the demand curve is declining diagonally.
For simplicity, we will suppose that the supply curve is N = rk for some k
(eg. k = 1) where r is the per-validator reward offered. Absent any attacks,
the status-quo values of N and r are the intersection of the supply curve
offered by potential validators and the demand curve offered by the protocol.

We model an attack as pushing the entire demand curve down, and in
addition costing or benefiting the attacker. We can determine everyone’s
equilibrium profit by calculating the intersection of the (unchanged) supply
curve and the new (depressed) demand curve, and then adding a term to
take into account the fact that the attacker’s profits as a percentage of their
deposits may be less or more than everyone else’s.

4

Locally, we can see the protocol reward curve as a straight line with slope
−p, and the supply curve of users’ willingness to participate as a straight line
with slope k. If the reward curve is pushed down by ε, then the validator
count is pushed left by ε

k+p
and the reward is reduced by ε∗ k

k+p
(another way

to think about it is that everyone loses ε from the attack and then recovers
p

k+p
from the equilibrium shifting left). Hence, for example, if k = p = 1,

then because of the marginal validators the attack drives away, everyone
(including victims and attacker) earns back an amount equal to half the
original per-validator loss of each victim. If k = 1 and p = 1

2
, then everyone

only earns back a third.
Note that the analysis does not change if the attacker makes a targeted

attack, provided the attacker does not have special knowledge about the vic-
tim’s willingness to be a validator (to preserve this assumption, we generally
recommend proof of stake validators try to remain anonymous). The reason
is that an attack on 1

M
of the validator set with the same griefing factor

harms them M times as much, driving M times as many to leave, but the
set affected is only 1

M
in size, so on net the same number of victims leave as

a result of the attack.
Griefing factors are highest when the attacker has exactly half of the

validators. This is convenient, because it means that the size of the attacker
and victim sets are the same, so the griefing factor is also the ratio of the
losses of average rewards of each validator. Let us suppose the victims lose
ε. If the mechanism has a griefing factor of N , then the attacker loses ε ∗ 1

N
.

If everyone recovers ε ∗ r where r = p
k+p

, then the victims’ losses become

ε ∗ (1 − r) and the attacker’s losses ε ∗ (1
N
− r). Hence, an attack can be

profitable if p
k+p

> 1
N

.

5

If N = 3, as is the case in the simplest collective-penalty scheme described
above, and we assume k = 1, then this implies we need p ≤ 1

2
for epsilon

attacks to be unprofitable.

4 Total attacks

Attackers with less than 50% of the validator set, or attackers trying to make
the attack look innocuous (eg. passing it off as abnormally high network la-
tency) only have epsilon attacks at their disposal. An epsilon attack has
the disadvantage that the attack must keep running, continuing to cost the
attacker. But what if the attacker can drive everyone out (eg. attack enough
to push victims’ revenues to below zero)? Then, from inside the mechanism,
it looks as though no one is attacking (as all victims are no longer partici-
pating), and so the attacker is claiming their full maximum rewards. In fact,
if p > 0, the attacker is claiming more rewards than before.

Additionally, unlike epsilon attacks, total attacks can be used to drive the
cost of doing an outright attack on the chain (eg. reverting finality) down
to zero, although only blocks finalized after the non-attacking validators all
leave can be reverted cheaply, so it may be philosophically more correct to
consider such an attack an attack on liveness rather than safety.

One answer may be: if a total attack, driving the revenues of innocent
validators to below zero, is taking place, clients can detect this, and coordi-
nate a minority soft fork extra-protocol to remove the attacker. But can we
do better?

We could choose p < 0 to make such attacks greatly unprofitable; how-

6

ever, this imposes great instability on the protocol because small shifts in
demand for validating could lead to very large shifts in both the size of the
validator set and the total issuance; indeed, as p approaches −k arbitrarily
small shifts in demand can cause arbitrarily large shifts in validator set size.
Hence, such an approach is likely nonviable.

Another approach is to limit the rate at which validators exit, making it
difficult for many validators to leave at the same time. This would require
an attacker to sustain an attack for a longer period of time, during which
the community could mount a response, and costing the attacker more in
the meantime. Particularly, one could freeze all validator withdrawals for
the entire period during which the protocol detects that there is an attack
and validators are not earning money. An attacker could still attack at zero
cost in a richer economic model by precommitting to attack and letting other
validators leave first, but this would be more complicated to implement.

Finally, one can add an “assurance contract” mechanic into the deposit
mechanism: a validator wishing to enter can specify the minimum validator
set size at which they are willing to enter (eg. if there are 1000 validators
currently in the validator set one could specify≤ 1000 to enter immediately or
one could specify 1500). The deposit mechanism would try to induct as many
validators as possible such that every validator would satisfy its constraint
(eg. if there are currently 1000 validators waiting, and new validators want to
join with specified minimums 1001 1003 1004 1004 1006, then the first four
could be inducted, as that would increase the count to 1004 which would
satisfy all four of them, but the remaining one would not be inducted as if all
five joined the total validator count would become 1005, and 1005 < 1006.
This would allow validators to more easily coordinate to fight back against
attacks, effectively by saying “I’m willing to join only if enough others join
at the same time to defeat this attacker with me”.

5 Conclusion

Discouragement attacks as a cheaper way of attacking a consensus algorithm
are one of the hardest classes of attacks to come up with defenses against.
This is even more true in proof of work: if a 51% attack succeeds, then
there is a coordination problem opposing “honest” miners trying to recover
the original fork, as none have the private incentive to participate in a fork
unless everyone else does. There are some possible strategies for mitigating

7

these attacks especially in a proof of stake system, including making them
take longer to execute, easier to coordinate to defeat, and less profitable, but
none are perfect. In general, this is still an active area of research, and more
research on counter-strategies is desired.

8

