首先说缺点,数据冗余过大,看似成本不高,实际成本高的吓人。
不稳定,币价不哦东太大
只能存冷的数据,热数据使用体验太差
分布式存储目前的架构不外乎两点:
首先说缺点,数据冗余过大,看似成本不高,实际成本高的吓人。
不稳定,币价不哦东太大
只能存冷的数据,热数据使用体验太差
分布式存储目前的架构不外乎两点:
在分布式存储上面需要解决的问题:
生态大数据的存储需求
当前,生态大数据面临严重安全隐患,强安全的存储对于生态大数据而言势在必行。
大数据的安全主要包括大数据自身安全和大数据技术安全,比如在大数据的数据存储中,由于黑客外部网络攻击和人为操作不当造成数据信息泄露。外部攻击包括对静态数据和动态数据的数据传输攻击、数据内容攻击、数据管理和网络物理攻击等。
例如,很多野外生态环境监测的海量数据需要网络传输,这就加大了网络攻击的风险。如果涉及到军用的一些生态环境数据,如果被黑客获得这些数据,就可能推测到我国军方的一些信息,或者获取敏感的生态环境数据,后果不堪设想。
生态大数据的商业化应用需要整合集成政府、企业、科研院所等社会多来源的数据。只有不同类型的生态环境大数据相互连接、碰撞和共享,才能释放生态环境大数据的价值。
以当前的智慧城市建设为例,很多城市都在全方位、多维度建立知识产权、种质资源、农资、农产品、病虫害疫情等农业信息大数据中心,为农业产供销提供全程信息服务。建设此类大数据中心,离不开各部门生态大数据的共享。
但是,生态大数据共享面临着巨大挑战。首先,我国生态环境大数据包括气象、水利、生态、国土、农业、林业、交通、社会经济等其他部门的大数据,涉及多领域多部门和多源数据。虽然目前这些部门已经建立了自己的数据平台,但这些平台之间互不连通,只是一个个的数据孤岛。
其次,相关部门因为无法追踪数据的轨迹,担心数据的利益归属问题,便无法实现数据的共享。因此,要想挖掘隐藏在生态大数据背后的潜在价值,实现安全的数据共享是关键,也是生态大数据产生价值的前提和基础。
生态大数据来之不易,是研究院所、企业、个人等社会来源的集体智慧。
其中,很多生态大数据涉及到了知识产权的保护。但是目前的中心化存储无法保证知识产权的保护,无法对数据的使用进行溯源管理,容易造成知识产权的侵犯和隐私数据的泄露。
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!