背景介绍在区块链技术蓬勃发展的浪潮中,海量的链上数据如同潮水般涌来,对区块链日志进行高效分析成为行业的关键挑战。传统的数据处理工具在面对区块链日志高并发、大容量、实时性强等特点时,常常显得力不从心,性能瓶颈日益凸显。作为一名深耕数据处理领域的开发者,我在区块链日志分析的实践中不断探索与尝试
在区块链技术蓬勃发展的浪潮中,海量的链上数据如同潮水般涌来,对区块链日志进行高效分析成为行业的关键挑战。
传统的数据处理工具在面对区块链日志高并发、大容量、实时性强等特点时,常常显得力不从心,性能瓶颈日益凸显。
作为一名深耕数据处理领域的开发者,我在区块链日志分析的实践中不断探索与尝试,历经无数个日夜的代码调试与性能优化,逐步积累了丰富的经验。
在一次次解决实际问题的过程中,我发现许多技术思路具有通用性,于是经过反复打磨与提炼,最终将这些宝贵的性能优化经验沉淀为一个通用的流式引擎框架 ——
Fluxus
。
它以卓越的性能、灵活的功能和友好的使用体验,为实时数据处理领域带来全新解决方案。
在数据洪流席卷各行各业的今天,实时数据处理能力成为企业保持竞争力的关键。
近日,这款基于 Rust 语言开发的轻量级流处理引擎正式亮相,凭借我在区块链日志分析性能优化中积累的深厚技术底蕴,重新定义了实时数据处理的标准。
Fluxus 深度挖掘 Rust 语言在性能上的巨大优势,精心优化实时数据处理流程,能够高效应对大规模数据流。
在实际测试中,面对每秒数十万条数据的冲击,Fluxus 仍能保持极低的延迟和极高的吞吐量,确保数据处理的及时性和准确性,为金融交易监控、网络流量分析等对实时性要求极高的场景提供了坚实保障。
Fluxus 提供了丰富的窗口操作模式。
翻滚窗口(Tumbling Windows) 以固定大小且不重叠的窗口对数据进行切割处理,适用于对数据进行周期性统计分析,如每小时的销售数据汇总;
滑动窗口(Sliding Windows 则以固定大小但重叠的窗口形式,能够捕捉数据的动态变化趋势,在股票价格波动分析、温度传感器数据监测等场景中发挥重要作用;
会话窗口(Session Windows) 基于非活动间隙动态调整窗口大小,特别适合处理用户行为数据,如分析用户在电商平台上的购物会话时长和行为模式。
借助对数据流并行处理的支持,Fluxus 充分发挥多核处理器的性能优势,大幅提升数据处理效率。
同时,它还提供了一套丰富的流操作,涵盖map
、filter
、aggregate
等常见操作,用户能够轻松实现复杂的数据转换和分析逻辑。
无论是对文本流进行词频统计,还是对网络日志进行异常检测,Fluxus 都能快速精准地完成任务,助力企业从海量数据中提取有价值的信息。
Fluxus 的 API 采用类型安全设计,从根源上减少了运行时错误的发生概率,为开发者营造了更加稳定、高效的开发环境。
清晰的接口定义和良好的项目结构,使得开发者能够快速上手并对引擎进行扩展。
无论是经验丰富的开发老手,还是初入实时数据处理领域的新手,都能在 Fluxus 的帮助下,高效地完成项目开发。
Fluxus 的架构由多个核心模块协同工作。
fluxus-api
定义了引擎的核心 API 和接口,为引擎各组件与用户应用之间搭建起稳定的沟通桥梁;
fluxus-core
包含核心实现和数据结构,负责处理流处理的内部逻辑,如窗口计算和操作执行;
fluxus-runtime
则提供运行时引擎和执行环境,合理分配资源并高效调度任务,确保整个系统的稳定运行和高效执行。
为了让开发者更直观地感受 Fluxus 流处理引擎的强大功能与便捷使用,提供了一系列示例应用,覆盖多种常见数据处理场景。
在文本处理领域,Word Count 示例利用翻滚窗口,将文本流拆分成单词,并统计每个时间窗口内的词频,同时展现了 Fluxus 的并行处理能力。
use anyhow::Result;
use fluxus_api::{
DataStream,
io::{CollectionSink, CollectionSource},
};
use fluxus_core::WindowConfig;
use std::collections::HashMap;
use std::time::Duration;
pub type WordCount = HashMap<String, usize>;
#[tokio::main]
async fn main() -> Result<()> {
// Sample input text
let text = vec![
"hello world",
"hello stream processing",
"world of streaming",
"hello streaming world",
];
// Create a source from the text collection
let source = CollectionSource::new(text);
let sink: CollectionSink<WordCount> = CollectionSink::new();
// Build and execute the streaming pipeline
DataStream::new(source)
// Split text into words
.map(|line| {
line.split_whitespace()
.map(|s| s.to_lowercase())
.collect::<Vec<_>>()
})
// Parallelize the processing
.parallel(2)
// Create tumbling windows of 1 second
.window(WindowConfig::tumbling(Duration::from_millis(1000)))
// Count words in each window
.aggregate(HashMap::new(), |mut counts, words| {
for word in words {
*counts.entry(word).or_insert(0) += 1;
}
counts
})
// Write results to sink
.sink(sink.clone())
.await?;
// Print the results
println!("\nWord count results:");
for result in sink.get_data() {
println!("\nWindow results:");
let mut words: Vec<_> = result.iter().collect();
words.sort_by(|a, b| b.1.cmp(a.1).then(a.0.cmp(b.0)));
for (word, count) in words {
println!(" {}: {}", word, count);
}
}
Ok(())
}
运行cargo run --bin word-count
,开发者能快速理解基本流处理逻辑与窗口操作的基础应用。
在物联网数据处理方面,Temperature Sensor Analysis 示例用于处理多个传感器的读数,通过滑动窗口持续监控数据,计算温度的最小值、最大值和平均值。这不仅体现了 Fluxus 对 IoT 数据的高效处理能力,也展示了其在时间序列数据处理上的优势。
use anyhow::Result;
use fluxus_api::{
DataStream,
io::{CollectionSink, CollectionSource},
};
use fluxus_core::WindowConfig;
use std::collections::HashMap;
use std::time::{Duration, SystemTime};
#[derive(Clone)]
pub struct SensorReading {
sensor_id: String,
temperature: f64,
humidity: f64,
timestamp: SystemTime,
}
#[derive(Clone)]
pub struct SensorStats {
sensor_id: String,
avg_temperature: f64,
avg_humidity: f64,
min_temperature: f64,
max_temperature: f64,
reading_count: usize,
}
#[tokio::main]
async fn main() -> Result<()> {
// Generate sample temperature readings
let readings = generate_sample_readings();
let source = CollectionSource::new(readings);
let sink = CollectionSink::new();
// Build and execute the streaming pipeline
DataStream::new(source)
// Group by sensor_id
.map(|reading| {
(
reading.sensor_id.clone(),
(reading.temperature, reading.humidity, reading.timestamp),
)
})
// Create 10-second tumbling windows
.window(WindowConfig::tumbling(Duration::from_millis(10000)))
// Aggregate temperatures in each window
.aggregate(
HashMap::new(),
|mut stats, (sensor_id, (temp, humidity, _))| {
let entry = stats
.entry(sensor_id.clone())
.or_insert_with(|| SensorStats {
sensor_id: String::new(),
avg_temperature: 0.0,
avg_humidity: 0.0,
min_temperature: f64::MAX,
max_temperature: f64::MIN,
reading_count: 0,
});
entry.sensor_id = sensor_id;
entry.min_temperature = entry.min_temperature.min(temp);
entry.max_temperature = entry.max_temperature.max(temp);
entry.avg_temperature = (entry.avg_temperature * entry.reading_count as f64 + temp)
/ (entry.reading_count + 1) as f64;
entry.avg_humidity = (entry.avg_humidity * entry.reading_count as f64 + humidity)
/ (entry.reading_count + 1) as f64;
entry.reading_count += 1;
stats
},
)
.sink(sink.clone())
.await?;
// Print results
println!("\nTemperature analysis results:");
for window_stats in sink.get_data() {
println!("\nWindow results:");
for (_, stats) in window_stats {
println!(
"Sensor {}: {} readings, Avg: {:.1}°C, Min: {:.1}°C, Max: {:.1}°C, Avg Humidity: {:.1}%",
stats.sensor_id,
stats.reading_count,
stats.avg_temperature,
stats.min_temperature,
stats.max_temperature,
stats.avg_humidity,
);
}
}
Ok(())
}
// Helper function to generate sample data
fn generate_sample_readings() -> Vec<SensorReading> {
let start_time = SystemTime::now();
let mut readings = Vec::new();
for i in 0..100 {
let timestamp = start_time + Duration::from_secs(i as u64 / 10);
// Sensor 1: Normal temperature variations
readings.push(SensorReading {
sensor_id: "sensor1".to_string(),
temperature: 20.0 + (i as f64 / 10.0).sin() * 2.0,
humidity: 50.0 + (i as f64 / 10.0).cos() * 5.0,
timestamp,
});
// Sensor 2: Gradually increasing temperature
readings.push(SensorReading {
sensor_id: "sensor2".to_string(),
temperature: 22.0 + i as f64 * 0.1,
humidity: 55.0 + i as f64 * 0.2,
timestamp,
});
// Sensor 3: Random fluctuations
readings.push(SensorReading {
sensor_id: "sensor3".to_string(),
temperature: 25.0 + (i as f64 * 0.7).cos() * 3.0,
humidity: 60.0 + (i as f64 * 0.5).sin() * 4.0,
timestamp,
});
}
readings
}
对于用户行为分析,Click Stream Analysis 示例借助会话窗口,跟踪用户的导航模式,将事件分组为会话,并分析用户参与度指标,助力企业深入了解用户行为,优化产品设计和营销策略。
use anyhow::Result;
use fluxus_api::{
DataStream,
io::{CollectionSink, CollectionSource},
};
use fluxus_core::WindowConfig;
use std::collections::HashMap;
use std::time::{Duration, SystemTime};
#[derive(Clone)]
pub struct ClickEvent {
user_id: String,
page_id: String,
event_type: String,
timestamp: SystemTime,
}
#[derive(Clone)]
pub struct UserSession {
user_id: String,
page_views: Vec<String>,
start_time: SystemTime,
duration_secs: u64,
total_events: usize,
}
#[tokio::main]
async fn main() -> Result<()> {
// Generate sample click events
let events = generate_sample_clicks();
let source = CollectionSource::new(events);
let sink = CollectionSink::new();
// Build and execute the streaming pipeline
DataStream::new(source)
// Filter only page view events
.filter(|event| event.event_type == "page_view")
// Group by user_id
.map(|event| {
(
event.user_id.clone(),
(event.page_id.clone(), event.timestamp),
)
})
// Create session windows with 30-second timeout
.window(WindowConfig::session(Duration::from_millis(30000)))
// Aggregate user sessions
.aggregate(
HashMap::new(),
|mut sessions, (user_id, (page_id, timestamp))| {
let session = sessions
.entry(user_id.clone())
.or_insert_with(|| UserSession {
user_id,
page_views: Vec::new(),
start_time: timestamp,
duration_secs: 0,
total_events: 0,
});
session.page_views.push(page_id);
session.duration_secs = timestamp
.duration_since(session.start_time)
.unwrap_or(Duration::from_secs(0))
.as_secs();
session.total_events += 1;
sessions
},
)
.sink(sink.clone())
.await?;
// Print results
println!("\nClick stream analysis results:");
for session_data in sink.get_data() {
println!("\nSession window results:");
for (_, session) in session_data {
println!(
"User {}: {} events over {}s, Pages: {}",
session.user_id,
session.total_events,
session.duration_secs,
session.page_views.join(" -> ")
);
}
}
Ok(())
}
// Helper function to generate sample data
fn generate_sample_clicks() -> Vec<ClickEvent> {
let start_time = SystemTime::now();
let mut events = Vec::new();
let pages = ["home", "products", "cart", "checkout"];
let users = ["user1", "user2", "user3"];
for (user_idx, user_id) in users.iter().enumerate() {
let user_start = start_time + Duration::from_secs(user_idx as u64 * 5);
// Simulate a user session with page views and some other events
for (i, &page) in pages.iter().enumerate() {
// Add page view
events.push(ClickEvent {
user_id: user_id.to_string(),
page_id: page.to_string(),
event_type: "page_view".to_string(),
timestamp: user_start + Duration::from_secs(i as u64 * 10),
});
// Add some click events
events.push(ClickEvent {
user_id: user_id.to_string(),
page_id: page.to_string(),
event_type: "click".to_string(),
timestamp: user_start + Duration::from_secs(i as u64 * 10 + 2),
});
}
}
events
}
Network Log Analysis 示例则展示了 Fluxus 的高级流处理特性。它对 HTTP 访问日志进行处理,计算请求统计信息,并使用带有自定义聚合的滑动窗口,满足复杂网络数据的分析需求。
use anyhow::Result;
use fluxus_api::{
DataStream,
io::{CollectionSink, CollectionSource},
};
use fluxus_core::WindowConfig;
use std::collections::HashMap;
use std::time::{Duration, SystemTime};
#[derive(Clone)]
#[allow(dead_code)]
pub struct LogEntry {
ip: String,
method: String,
path: String,
status: u16,
bytes: u64,
timestamp: SystemTime,
}
#[derive(Clone)]
pub struct PathStats {
path: String,
total_requests: usize,
error_count: usize,
total_bytes: u64,
avg_response_size: f64,
}
#[tokio::main]
async fn main() -> Result<()> {
// Generate sample log entries
let logs = generate_sample_logs();
let source = CollectionSource::new(logs);
let sink = CollectionSink::new();
// Build and execute the streaming pipeline
DataStream::new(source)
// Group by path
.map(|log| (log.path.clone(), log))
// Create 60-second sliding windows with 10-second slide
.window(WindowConfig::sliding(
Duration::from_millis(60000),
Duration::from_millis(10000),
))
// Aggregate path statistics
.aggregate(HashMap::new(), |mut stats, (path, log)| {
let entry = stats.entry(path).or_insert_with(|| PathStats {
path: String::new(),
total_requests: 0,
error_count: 0,
total_bytes: 0,
avg_response_size: 0.0,
});
entry.path = log.path;
entry.total_requests += 1;
if log.status >= 400 {
entry.error_count += 1;
}
entry.total_bytes += log.bytes;
entry.avg_response_size = entry.total_bytes as f64 / entry.total_requests as f64;
stats
})
.sink(sink.clone())
.await?;
// Print results
println!("\nNetwork log analysis results:");
for window_stats in sink.get_data() {
println!("\nWindow results:");
for (_, stats) in window_stats {
println!(
"Path: {}\n Requests: {}\n Errors: {}\n Avg Size: {:.2} bytes\n Error Rate: {:.1}%",
stats.path,
stats.total_requests,
stats.error_count,
stats.avg_response_size,
(stats.error_count as f64 / stats.total_requests as f64) * 100.0
);
}
}
Ok(())
}
// Helper function to generate sample data
fn generate_sample_logs() -> Vec<LogEntry> {
let start_time = SystemTime::now();
let mut logs = Vec::new();
let paths = ["/api/users", "/api/products", "/api/orders", "/health"];
let methods = ["GET", "POST", "PUT", "DELETE"];
for i in 0..200 {
let timestamp = start_time + Duration::from_secs(i as u64 / 4);
let path = paths[i % paths.len()];
let method = methods[i % methods.len()];
// Generate a mix of successful and error responses
let status = if i % 10 == 0 {
500 // Occasional server errors
} else if i % 7 == 0 {
404 // Some not found errors
} else {
200 // Mostly successful
};
// Simulate variable response sizes
let bytes = if status == 200 {
1000 + (i % 5) * 500 // Successful responses have larger sizes
} else {
100 + (i % 3) * 50 // Error responses are smaller
} as u64;
logs.push(LogEntry {
ip: format!("192.168.1.{}", i % 256),
method: method.to_string(),
path: path.to_string(),
status,
bytes,
timestamp,
});
}
logs
}
在物联网设备数据综合处理场景中,IoT Device Analysis 示例可同时处理来自不同设备的传感器数据,利用翻滚窗口实时监控并计算设备状态统计信息,为企业实现设备的高效管理和维护提供支持。
use anyhow::Result;
use fluxus_api::{
DataStream,
io::{CollectionSink, CollectionSource},
};
use fluxus_core::WindowConfig;
use std::collections::HashMap;
use std::time::{Duration, SystemTime};
#[derive(Clone)]
pub struct IoTData {
device_id: String,
device_type: String,
value: f64,
battery_level: u8,
signal_strength: i32,
timestamp: SystemTime,
}
#[derive(Clone)]
pub struct DeviceStats {
device_id: String,
device_type: String,
avg_value: f64,
min_battery: u8,
avg_signal: i32,
alert_count: u32,
last_update: SystemTime,
}
#[tokio::main]
async fn main() -> Result<()> {
// Generate sample IoT device data
let iot_data = generate_sample_data();
let source = CollectionSource::new(iot_data);
let sink = CollectionSink::new();
// Build and execute stream processing pipeline
DataStream::new(source)
// Group by device ID
.map(|data| (data.device_id.clone(), data))
// Create 2-minute sliding window with 30-second slide
.window(WindowConfig::sliding(
Duration::from_secs(120), // 2 minutes
Duration::from_secs(30), // 30 seconds
))
// Aggregate device statistics
.aggregate(HashMap::new(), |mut stats, (device_id, data)| {
let entry = stats
.entry(device_id.clone())
.or_insert_with(|| DeviceStats {
device_id,
device_type: data.device_type.clone(),
avg_value: 0.0,
min_battery: data.battery_level,
avg_signal: 0,
alert_count: 0,
last_update: data.timestamp,
});
// Update statistics
entry.avg_value = (entry.avg_value + data.value) / 2.0;
entry.min_battery = entry.min_battery.min(data.battery_level);
entry.avg_signal = (entry.avg_signal + data.signal_strength) / 2;
entry.last_update = data.timestamp;
// Check alert conditions
if data.battery_level < 20 || data.signal_strength < -90 {
entry.alert_count += 1;
}
stats
})
// Output results to sink
.sink(sink.clone())
.await?;
// Print results
println!("\nIoT Device Statistics:");
for result in sink.get_data() {
for (_, stats) in result {
println!(
"Device ID: {}, Type: {}, Average Value: {:.2}, Min Battery: {}%, Average Signal: {}dBm, Alert Count: {}",
stats.device_id,
stats.device_type,
stats.avg_value,
stats.min_battery,
stats.avg_signal,
stats.alert_count
);
}
}
Ok(())
}
// Generate sample IoT device data
fn generate_sample_data() -> Vec<IoTData> {
let device_types = [
"Temperature Sensor",
"Humidity Sensor",
"Pressure Sensor",
"Light Sensor",
];
let mut data = Vec::new();
let start_time = SystemTime::now();
for i in 0..100 {
for j in 1..=5 {
let device_type = device_types[j % device_types.len()];
let base_value = match device_type {
"Temperature Sensor" => 25.0,
"Humidity Sensor" => 60.0,
"Pressure Sensor" => 1013.0,
"Light Sensor" => 500.0,
_ => 0.0,
};
// Simulate data fluctuation
let value_variation = (i as f64 * 0.1).sin() * 5.0;
let battery_drain = (i / 20) as u8; // Simulate battery consumption
let reading = IoTData {
device_id: format!("DEV_{:03}", j),
device_type: device_type.to_string(),
value: base_value + value_variation,
battery_level: 100 - battery_drain,
signal_strength: -70 - (i % 30), // Simulate signal strength fluctuation
timestamp: start_time + Duration::from_secs(i as u64 * 15), // One data point every 15 seconds
};
data.push(reading);
}
}
data
}
Log Anomaly Detection 示例聚焦于系统日志数据,通过自定义窗口分析异常日志模式,及时发现潜在的系统故障和安全威胁,保障系统稳定运行。
use anyhow::Result;
use fluxus_api::{
DataStream,
io::{CollectionSink, CollectionSource},
};
use fluxus_core::WindowConfig;
use std::{
collections::HashMap,
time::{Duration, SystemTime},
};
#[derive(Clone)]
#[allow(dead_code)]
pub struct LogEvent {
service: String,
level: String,
message: String,
latency_ms: u64,
timestamp: SystemTime,
}
#[derive(Clone)]
pub struct AnomalyStats {
service: String,
error_rate: f64,
avg_latency: f64,
error_count: u32,
high_latency_count: u32,
total_events: u32,
}
#[tokio::main]
async fn main() -> Result<()> {
// Generate sample log events
let events = generate_sample_events();
let source = CollectionSource::new(events);
let sink = CollectionSink::new();
// Build and execute stream processing pipeline
DataStream::new(source)
// Group by service name
.map(|event| (event.service.clone(), event))
// Create 1-minute sliding window with 10-second slide
.window(WindowConfig::sliding(
Duration::from_secs(60), // 1 minute
Duration::from_secs(10), // 10 seconds
))
// Aggregate anomaly statistics
.aggregate(HashMap::new(), |mut stats, (service, event)| {
let entry = stats
.entry(service.clone())
.or_insert_with(|| AnomalyStats {
service,
error_rate: 0.0,
avg_latency: 0.0,
error_count: 0,
high_latency_count: 0,
total_events: 0,
});
// Update statistics
entry.total_events += 1;
entry.avg_latency = (entry.avg_latency * (entry.total_events - 1) as f64
+ event.latency_ms as f64)
/ entry.total_events as f64;
// Detect errors and high latency
if event.level == "ERROR" {
entry.error_count += 1;
}
if event.latency_ms > 1000 {
// Latency over 1 second
entry.high_latency_count += 1;
}
// Calculate error rate
entry.error_rate = entry.error_count as f64 / entry.total_events as f64;
stats
})
// Output results to sink
.sink(sink.clone())
.await?;
// Print results
println!("\nLog Anomaly Detection Statistics:");
for result in sink.get_data() {
for (_, stats) in result {
println!(
"Service: {}, Error Rate: {:.2}%, Avg Latency: {:.2}ms, Error Count: {}, High Latency Events: {}, Total Events: {}",
stats.service,
stats.error_rate * 100.0,
stats.avg_latency,
stats.error_count,
stats.high_latency_count,
stats.total_events
);
}
}
Ok(())
}
// Generate sample log events
fn generate_sample_events() -> Vec<LogEvent> {
let services = vec![
"api-gateway",
"user-service",
"order-service",
"payment-service",
];
let mut events = Vec::new();
let start_time = SystemTime::now();
for i in 0..200 {
for service in &services {
// Simulate different error probabilities for services
let error_prob = match *service {
"api-gateway" => 0.05,
"user-service" => 0.02,
"order-service" => 0.08,
"payment-service" => 0.03,
_ => 0.01,
};
// Randomly select log level
let level = if rand_float() < error_prob {
"ERROR"
} else if rand_float() < 0.15 {
"WARN"
} else {
"INFO"
};
// Simulate latency
let base_latency = match *service {
"api-gateway" => 50,
"user-service" => 100,
"order-service" => 150,
"payment-service" => 200,
_ => 100,
};
let latency = base_latency + (rand_float() * 1000.0) as u64;
let message = format!("Processing request #{}", i);
let event = LogEvent {
service: service.to_string(),
level: level.to_string(),
message,
latency_ms: latency,
timestamp: start_time + Duration::from_secs(i as u64 / 2), // One event every 0.5 seconds
};
events.push(event);
}
}
events
}
// Generate random float between 0 and 1
fn rand_float() -> f64 {
use std::time::SystemTime;
let nanos = SystemTime::now()
.duration_since(SystemTime::UNIX_EPOCH)
.unwrap()
.subsec_nanos() as f64;
(nanos % 1000.0) / 1000.0
}
在金融领域,Stock Market Analysis 示例处理实时股票价格数据,运用会话窗口分析交易模式,并计算股票价格指标,为投资者提供决策依据。
use anyhow::Result;
use fluxus_api::{
DataStream,
io::{CollectionSink, CollectionSource},
};
use fluxus_core::WindowConfig;
use std::{
collections::HashMap,
time::{Duration, SystemTime},
};
#[derive(Clone)]
#[allow(dead_code)]
pub struct StockTrade {
symbol: String,
price: f64,
volume: u64,
timestamp: SystemTime,
}
#[derive(Clone)]
#[allow(dead_code)]
pub struct StockStats {
symbol: String,
vwap: f64, // Volume Weighted Average Price
total_volume: u64,
price_change: f64,
high: f64,
low: f64,
}
#[tokio::main]
async fn main() -> Result<()> {
// Generate sample stock trading data
let trades = generate_sample_trades();
let source = CollectionSource::new(trades);
let sink = CollectionSink::new();
// Build and execute stream processing pipeline
DataStream::new(source)
// Group by stock symbol
.map(|trade| (trade.symbol.clone(), trade))
// Create 5-minute sliding window with 1-minute slide
.window(WindowConfig::sliding(
Duration::from_secs(300), // 5 minutes
Duration::from_secs(60), // 1 minute
))
// Aggregate stock statistics within each window
.aggregate(HashMap::new(), |mut stats, (symbol, trade)| {
let entry = stats.entry(symbol.clone()).or_insert_with(|| StockStats {
symbol,
vwap: 0.0,
total_volume: 0,
price_change: 0.0,
high: trade.price,
low: trade.price,
});
// Update statistics
let volume_price =
(entry.vwap * entry.total_volume as f64) + (trade.price * trade.volume as f64);
entry.total_volume += trade.volume;
entry.vwap = volume_price / entry.total_volume as f64;
entry.high = entry.high.max(trade.price);
entry.low = entry.low.min(trade.price);
entry.price_change = entry.high - entry.low;
stats
})
// Output results to sink
.sink(sink.clone())
.await?;
// Print results
println!("\nStock Market Statistics:");
for result in sink.get_data() {
for (symbol, stats) in result {
println!(
"Stock: {}, VWAP: {:.2}, Volume: {}, Price Change: {:.2}, High: {:.2}, Low: {:.2}",
symbol, stats.vwap, stats.total_volume, stats.price_change, stats.high, stats.low
);
}
}
Ok(())
}
// Generate sample trading data
fn generate_sample_trades() -> Vec<StockTrade> {
let symbols = vec!["AAPL", "GOOGL", "MSFT", "AMZN"];
let mut trades = Vec::new();
let start_time = SystemTime::now();
for i in 0..100 {
for symbol in &symbols {
let base_price = match *symbol {
"AAPL" => 150.0,
"GOOGL" => 2800.0,
"MSFT" => 300.0,
"AMZN" => 3300.0,
_ => 100.0,
};
// Simulate price fluctuation
let price_variation = (i as f64 * 0.1).sin() * 5.0;
let trade = StockTrade {
symbol: symbol.to_string(),
price: base_price + price_variation,
volume: 100 + (i as u64 % 900),
timestamp: start_time + Duration::from_secs(i as u64 * 30), // Data point every 30 seconds
};
trades.push(trade);
}
}
trades
}
这些示例遵循相似的结构,从定义数据结构、创建数据源,到构建处理管道、配置窗口、定义聚合,再到输出结果,为开发者提供了清晰的学习路径。
建议开发者按照从基础到进阶的顺序逐步探索,先从 Word Count 示例掌握基本概念,再通过 Temperature Sensor 示例学习时间窗口应用,接着借助 Click Stream 示例了解会话窗口,之后深入研究 Network Log 示例的高级特性,以及 IoT Devices 示例的多数据源处理、Log Anomaly 示例的自定义窗口和 Stock Market 示例的实时监控,全面掌握 Fluxus 流处理引擎的应用技巧。
从文本分析到金融市场洞察,从物联网设备数据处理到网络安全监控,Fluxus 在众多领域都展现出强大的应用潜力。
随着 Fluxus 的正式发布,实时数据处理的大门将被进一步打开。
无论是追求极致性能的企业,还是渴望高效开发的开发者,Fluxus 都有望成为他们在实时数据处理领域的得力助手。
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!