本节主要介绍了RSA算法加解密过程及原理,RSA还有很多相关内容,包括签名,具体运算过程,背景知识,安全性等。后续几篇将分别介绍,以求知识系统的完备性。
费马小定理是初等数论四大定理(威尔逊定理,欧拉定理(数论中的欧拉定理),中国剩余定理(又称孙子定理),费马小定理)之一,其他定理如欧拉定理,之前文章也提过,后续会抽时间单独介绍。关于费马小定理的应用,在求解模逆运算的时候第一种方法便是使用费马小定理求解,还可应用在快速幂模运算等。
本文介绍了ElGamal算法。其中过程又提到了费马小定理等。
并不是所有a,m 都存在模逆元,只有当a与m互质才有乘法模逆元存在。
本节将总结下模运算的运算规则。更好地理解之前文章中一些推导过程。
本节介绍离散域上椭圆曲线进行迪菲赫尔曼密钥交换,并加以实例说明
本节继续介绍离散域上椭圆曲线进行签名和验证过程,并加以实例说明。
本节将介绍如何使用离散域上椭圆曲线进行加密和解密过程。若果觉得阅读理解本文有困难,可以先参考之前的一些铺垫的历史文章。以后所说的椭圆曲线默认都是指离散域上模素数的椭圆曲线。
本节介绍如何让椭圆曲线点的坐标离散化。
本节主要说涉及到数论的一些知识和椭圆曲线上加法运算。
本节主要说椭圆曲线的背景及基本性质。
本节主要讲欧几里得算法及其扩展算法。
密码学很神秘?很高端?本文是密码学系列的第一篇:概述。带你一起来揭秘! 根据密钥的类型一般可以分为对称加密和非对称加密
有限域上的椭圆曲线是零知识证明的基础。零知识的实现是基于离散对数问题。从计算的角度来看,F_p是个有限域,在之基础上建立的椭圆曲线点的运算都是在这个域范围内。有限域上的椭圆曲线上有很多循环子群F_r,具有加法同态的特性。离散对数问题指的是,在循环子群上已知两点,却很难知道两点的标量。
在「详解TLS/SSL运行机制」这篇文章中,在TLS握手的第三步中,用到了数字证书中的公钥,通过这篇文章,我们一起来看一下为什么会出现数字证书,以及它解决了什么问题。
TLS
国密算法SM1(SCB2)、SM2、SM3、SM4、SM7、SM9、ZUC介绍
什么是可验证随机函数VRF
ECDH全称是椭圆曲线迪菲-赫尔曼秘钥交换(Elliptic Curve Diffie–Hellman key Exchange),主要是用来在一个不安全的通道中建立起安全的共有加密资料,一般来说交换的都是私钥,这个密钥一般作为“对称加密”的密钥而被双方在后续数据传输中使用。
ECDH
私钥
非对称加密技术,在现在网络中,有非常广泛应用。加密技术更是数字货币的基础。
所谓非对称,就是指该算法需要一对密钥,使用其中一个(公钥)加密,则需要用另一个(私钥)才能解密。 但是对于其原理大部分同学应该都是一知半解,今天就来分析下经典的非对称加密算法 - RSA算法。 通过本文的分析,可以更好的理解非对称加密原理,可以让我们更好的使用非对称加密技术。
扫一扫 - 使用登链小程序
38 篇文章,358 学分
61 篇文章,346 学分
108 篇文章,260 学分
22 篇文章,231 学分
12 篇文章,151 学分