本文探讨了在保护用户隐私的前提下改进机器学习应用的方法,重点介绍了同态加密和联邦学习在欺诈检测中的应用。文章讨论了使用同态加密对数据进行加密处理,然后在加密状态下进行机器学习模型训练和推理,以及利用联邦学习在不共享原始数据的情况下,通过多个参与方协作训练模型。