Concrete ML v1.5版本发布,引入了新的DataFrame API,支持在加密存储的数据上工作,并增加了加速神经网络的新选项,速度可提高2-3倍。同时,发布了一个新的演示,展示如何安全地匿名化文本数据,以便在使用ChatGPT查询知识库时不会泄露任何个人身份信息。该版本旨在推动隐私保护的机器学习和加密协作。
Concrete ML v1.6 版本提升了大型神经网络的延迟,增加了对预训练的基于树模型的支持,并通过引入 DataFrame 模式和简化 Logistic 回归训练的部署,从而简化了协作计算。该版本还展示了深度 MLP 模型和 ResNet18 模型的延迟改进,并提供了加密训练和 DataFrame 模式的增强功能。此外,还包含用于Windows系统的GPU支持。
本文介绍了Zama Bounty Program Season 7的获奖方案,该方案使用全同态加密(FHE)和Concrete ML实现了加密图像的隐形水印。该方案包含一个编码器神经网络(用于嵌入水印)和一个解码器神经网络(用于提取水印)。文章还讨论了该方案的性能和水印提取方法,以及其在版权保护、身份验证和篡改检测等方面的应用潜力。
Zama团队使用Concrete ML加速了同态加密(FHE)在机器学习中的应用,并成功超越了之前论文中的基准测试结果。他们通过改进编译器,分离了机器学习和密码学任务,并采用了MLIR框架,支持多种硬件加速器。实验结果表明,新的Concrete ML在执行速度上有了显著提升,例如NN-20模型比2021年的结果快21倍。
文章探讨了人工智能(AI)可能在未来实现人类级别智能的几种驱动因素,包括芯片技术进步、资金的直接投入、去中心化计算的成熟以及没有根本性障碍。文章还讨论了这些因素如何推动AI技术的快速发展。