本文详细解释了区块链中两个关键的加密原语:哈希函数和Merkle树。文章从哈希函数的基本机制出发,探讨了其在区块链中的重要性,并介绍了哈希指针的概念。随后,文章深入讨论了传统Merkle树和并发Merkle树,以及它们在Solana区块链中的应用。
文章详细介绍了有限域上的椭圆曲线,包括它们的绘制、数学性质以及在密码学中的应用。通过多个示例和代码,展示了如何生成和操作这些曲线,并解释了其与有限域的循环群特性。
本文详细介绍了如何将R1CS(Rank 1 Constraint System)转换为QAP(Quadratic Arithmetic Program),并通过Python代码演示了实现过程,包括有限域算术、多项式插值等关键步骤。
本系列中,我们将分享两项崭新的工作:Lasso 和 Jolt,它们可以显著加速 web3 中应用的扩展和构造。它们共同代表了一种本质上全新的 SNARK 设计方法,可将已广泛部署的工具链的性能提升一个数量级或更多;提供更好、更方便的开发者体验;并使得审计变得更加容易。
本文详细介绍了Groth16零知识证明算法的原理、实现及其应用,包括可信设置、证明生成和验证的步骤,并讨论了防止伪造证明的方法以及算法中的安全问题。
本文详细介绍了如何在可信设置的基础上评估二次算术程序(QAP),并解释了如何在不泄露证据的情况下证明QAP的满足性,使用恒定大小的证明。同时还涉及了R1CS、椭圆曲线配对等技术的详细实现。
Nova算法是一种针对IVC(增量可验证计算,Incrementally Verifiable Computation)的新型的零知识证明算法。
文章详细介绍了二次算术程序(QAP)的概念及其在零知识证明中的应用,特别是如何通过拉格朗日插值将Rank 1约束系统(R1CS)转换为QAP,并通过Schwartz-Zippel引理在O(1)时间内验证QAP的等式。
开始鼓捣之前,我希望我知道的。 近年来,椭圆曲线BLS12-381逐渐火了起来。许多协议都将其应用到了数字签名和零知识证明中:Zcash、Ethereum 2.0、Skale、Algorand、Dfinity、Chia 等等。 不幸的是,现有的关于 BLS12-381 的资料里充满着晦涩的咒语,比如
GKR协议在InteractiveProtocol框架里是一套非常经典的协议,里面有很多细节值得关注一下,本系列专题会逐一detail出来:MultilinearExtensionsSum-CheckExtendedMUL/ADD...本章节,我们就一个数气球的toycas
在本文中,作者用一个形象的例子"沃尔多在哪里"给我们介绍零知识证明的概念、进而说明为什么要关注ZKP以及它们何时有用。我们还了解了它们的工作原理,以及它们为我们提供了哪些属性。并探讨了一些当前和未来可能应用
以下是ZK入门包内容的解读
这篇文章深入探讨了双线性映射(bilinear pairings)的原理及其在密码学中的应用,特别是在验证乘积的离散对数时。
文章详细介绍了如何将一组算术约束转换为Rank One Constraint System (R1CS),涵盖了转换中的优化和Circom库的实现方法。
蒙哥马利模乘算法关键是依赖于一种称为蒙哥马里形式(Montgomery form)的数字的特殊表示。效率高主要是因为避免了昂贵的除法运算。蒙哥马利形式采用一个常数R>N(N是要模的数),该常数与N互素,蒙哥马利乘法中唯一需要的除法是除以R。可以选择常数R,实际上R总是选2的次方,因为2的次方的除法可
本教程详细介绍了如何从零开始构建一个高效的零知识Merkle树(ZMT)实现,并讨论了如何构建仅需要O(log(n))存储的仅追加Merkle树。文章还探讨了如何生成和验证批量更新的Spiderman证明,并提供了TypeScript的实现代码。
如何创建 零知识证明并在Solidity 合约中验证
ZKP和zkSNARK是密码学里一个非常重要的分支,在以太坊的发展过程中异常强大,是以太坊可扩展性未来的途径。
零知识证明(ZKP)正在因其在代理计算给不受信任的服务器,解决去中心化账本的可扩展性问题等方面的诸多应用而逐渐变得流行起来。
零知识证明使用场景分析,在 Rollup 之外,还可以应用在哪?
扫一扫 - 使用登链小程序
380 篇文章,831 学分
117 篇文章,524 学分
67 篇文章,497 学分
113 篇文章,445 学分
147 篇文章,328 学分