区块链上的预言机是允许区块链世界与来自网络其余部分的数据交互的框架,我们将其称为网络 2.0 世界。随着智能合约的应用不断扩大,处理独特用例所需的各种数据也将不断扩大。
权益证明不需要能源密集型设备,但仍然可以提高效率,增加去中心化,并抵制审查。权益证明将成为整个网络的新标准。在本文中,我们将解释Merge并解释可以参与其中的方法。
本文将简要概述创建Web3智能合约所需的步骤。同时,我们将看到使用Visual Studio Code (VS Code)和Truffle for VS Code Extension来编写、部署和测试智能合约,从而成功地完成这些步骤。
以太坊网络是主链,所有直接发生在其上的交易都是“链上”,而其他任何交易都被视为“链下”。侧链和L2等一些脱链解决方案可以帮助以太坊扩大规模,提高交易速度,增加网络可以处理的交易数量。在本文中,我们将展示什么是侧链和L2解决方案,以及它们如何帮助实现可扩展性。
代币门控的概念用于限制访问,并为特定代币或一组代币的持有者提供独家内容、权利或成员资格。智能合约应该通过自动和手动来进行测试。使用HardHat或Truffle可以编写一组测试,以确保合约及其功能会按预期工作,最重要的是确保合约的安全性很高。
在Alchemy,我们将Web3定义为基于区块链技术的去中心化的互联网生态系统。
与PoW相比,PoS是一个更好的区块链安全机制,原因有三个。
不管我们喜不喜欢,ECDSA都是比特币和以太坊的王者,是其信任基础设施的核心。虽然它的可扩展性不如EdDSA等方法,但在创建签名时稍加修改就可以实现一系列保护隐私的方法。在开始之前,让我们快速了解一下ECDSA是如何工作的。
想做一个典型的三明治交易机器人,首先需要监听mempool里正在pending交易,并且能够快速广播你搭建的机器人交易,这有一些的硬件方面的门槛。其次你必须完全理解dex的运行逻辑和实现代码,不然可能会交易失败。(uniswapv2解析),最后就是搭建三明治交易机器人的运行逻辑,基本上分为以下步骤(这里以uniswap v2为例)
上次我们在研究 router合约的时候, 有一个 removeLiquidityWithPermit 函数, 今天讲讲它和 Pair 的permit方法
许多在线ECDSA教程涉及到数学的使用,关于s, r, v的一些东西,我们所有的开发人员都同意,其是无聊的,并且很难在没有bug的情况下实现。因此,在本文中,我们将使用OpenZeppelin和Ethers.js编写的合约中的内置函数来构建这个功能。
对于智能合约开发人员来说,知道如何安全地实现智能合约,并测试常见的陷阱和风险是很重要的。对于安全专业人员来说,有一个清晰的检查表可以帮助标准化测试方法,防止常见风险被忽视。基于这些原因,智能合约安全测试指南(SCSTG)应运而生。
从CRM系统到电子商务平台和移动应用程序,各行各业的企业都前所未有地依赖于数字技术。NFT的世界也是如此——为了保持客户的参与度和粘性,我们需要利用大量的数字平台。现在有一系列工具,使创建和铸造NFT变得轻而易举。那么,我们需要做些什么来实现我们的NFT的梦想呢?如果我们想让我们的收藏获得长期的成功,就来看看我们列出的9大必备工具吧。
前面我们已经大致了解了 uniswap 的交易算法, 今天我们一起看看 Uniswap手续费是怎么计算的
本文将深入探讨五种心智模型。
前阵子在兴趣驱使之下研究DeFi上的套利搬砖机器人的原理,过程有点坎坷,很多东西都只能靠自己去摸索踩坑出来,这篇文章用来记录一下关于链上智能合约数据的解析过程
BlackCat(又名ALPHV)勒索软件团伙已经利用Rust实现了勒索软件。因此,虽然Rust以前被用于恶意软件,但这是它第一次被用于勒索软件。使用Rust的主要优势是,它可能是可扩展的,可以在一系列系统上进行部署,并且很容易针对目标系统进行定制(因为它避免在框架内运行,并且可以在系统上本地运行)。
StarkNet上的合约存储是用简单的键/值对来处理的。如果一个合约从多个库导入,而这些库碰巧共享一个存储变量名(例如balance),如果编译器没有捕捉到,这些变量很可能会发生冲突。在撰写本文时,最好的解决方案是在存储变量名称前加上库的名称或命名空间。
在本教程中,将了解帮助我们将资金从一个帐户转移到另一个帐户的三个函数,以及推荐的方法。
假设我们想要构建一个应用程序,其中只有来自特定集合的NFT的所有者才能登录。
扫一扫 - 使用登链小程序
56 篇文章,289 学分
108 篇文章,257 学分
15 篇文章,208 学分
16 篇文章,177 学分
3 篇文章,172 学分