本文介绍的这些知识点是理解plookup的基础
环签名,目前在隐私Monero项目中有所应用
盲签名可以看成结合普通签名的变种,实现特殊的应用。RSA方案简单易解,实际代码工程是要有额外一些处理的,可能需要填充等。
本文继续讲sigma协议相关的引申和应用!
本文介绍Sigma协议的交互和非交互性质,简单明了,介绍了零知识证明中常用的Fiat-Shamir变换
在任意的零知识证明系统中,都有一个 prover 在不泄漏任何额外信息的前提下要让 verifier 确信某些陈述(Statement)是正确的。ZK-SNARK目前应用较多,有不少成熟的库,如libsnark,bellman等.
RSA Accumulator非成员证明,能够进行假如用Accumulator纪录一个UTXO 集合,证明某个UTXO不存在等场景。
本文描述了累加器的概念和性质,具体说明RSA累加器实现过程。可以看出Accumulator具有一些比merkle证明有优势的地方,比如聚合证明,证明大小不随着集合元素的增加而增加等。 实际应用实现中RSA累加器还会有一些前置处理操作,比如将原始数据映射到选定素数域上的值等。
Merkle树如果说有其不足之处的话,当叶子节点的数量级非常大,树层级数变多,在打开验证节点需要的merkle树证明路径也就越长,数据量就越大
本文介绍了Kate承诺在多点披露验证的情况,当然还有一种就是多个多项式在多个不同点打开验证,相信如果本文理解的话,是可以自己推出来的,不在详述了。
与上一篇初步方案相比,Kate承诺实现了多项式的隐藏和部分打开验证,实际上方法1生成的结果在zk-snark项目中称为SRS(structure reference string)或者CRS(common reference string),是承诺方P和验证方V所共有,实际选择曲线配对不是对称的,而是非对称两个群,以后说到具体的项目代码可以看得比较清楚。
目前为止的方案中, 承诺方造假的问题依然存在,仔细研究会发现问题关键在于承诺方P知道计算的输入变量r,z, 这样就有机会构造出新的多项式在r,z处取特定的值。如果P不知道r,z,就不能这样作弊了。于是Kate承诺选择在密文空间中进行计算。
Pedersen基于门限的秘密分享方案实际上采用了Pedersen承诺来构建多项式系数承诺,这一点很容易从对比其他秘密分享方案得出!
Pedersen承诺产生方式,有些类似加密,签名之类的算法。但是,作为密码学承诺重在“承诺”,并不提供解密算法,即如果只有r,无法有效地计算出隐私数据v。
本文介绍密码学承诺的含义及性质,并对哈希承诺做了说明,关于hash函数的内在机制实际是比较复杂的,我们以黑盒的角度来学习了解它的性质,在区块链&密码学中,哈希函数占据了基础且重要的位置。 比如区块链中常用的sha256,keccak等哈希算法。
PlonK算法实现了Universal的零知识证明。SRS只需要提供比多项式阶高的可信设置即可。PlonK电路采用特殊描述,一个门只支持乘法和加法操作。电路需要证明门的输入输出满足外,还需要证明连线的连接关系。PlonK算法的底层原理是多项式承诺。PlonK算法巧妙地将电路的满足关系通过多项式承诺进行证明并验证。
介绍我们所了解到的关于比特币隐私性和 Taproof 可扩展性的未来可能性。
不经意传输(Oblivious transfer)或者译为茫然传输是密码学中的一类协议,缩写为OT,实现了发送方将潜在的许多信息中的一个传递给接收方,但对接收方所接收信息保持未知状态。
双线性配对特性不仅可以用于签名构造,密钥协商等,还可以实现乘法的同态隐藏和校验。这一点在零知识证明项目中应用很多。另外需要说明的是,并非基于任何椭圆曲线都可以构造配对函数,对于能有效实现双线性对的椭圆曲线,称为pairing-friendly curves,例如BLS12_381曲线。
本文接着前一篇BLS密钥聚合,讲下原始的聚合密钥签名可能出现的问题,需要一些背景知识铺垫,以Schnorr签名为例来说明,对此不熟悉的可先参考相关文章:Schnorr签名与椭圆曲线
扫一扫 - 使用登链小程序
37 篇文章,357 学分
61 篇文章,328 学分
108 篇文章,260 学分
22 篇文章,219 学分
9 篇文章,155 学分